Our publications
von Kuegelgen N., Ludwik K., Mendonsa S., Roemer C., Becher E., Breimann L., Strauch M., Mari T., Mongellaz S., Zuckerman B., Grexa N., Oliveras-Martinez A., Woehler A., Selbach M., La Bella V., Ulitsky I., and Chekulaeva M. Neuromuscular dysfunction in patient-derived FUS(R244RR)-ALS iPSC model via
axonal downregulation of neuromuscular junction proteins. (2024) bioRxiv https://doi.org/10.1101/2024.08.17.607965
Dantsuji S. and Chekulaeva M. Concurrent Profiling of Localized Transcriptome and RNA Dynamics in Neurons by Spatial SLAMseq. (2024) Methods Mol Biol 2863:297-317. https://doi.org/10.1007/978-1-0716-4176-7_18.
Chekulaeva M. (2024). Mechanistic insights into the basis of widespread RNA localization. Nature Cell Biology https://doi.org/10.1038/s41556-024-01444-5
Loedige I.*, Baranovskii A.*, Mendonsa S., Dantsuji S., Popitsch N., Breimann L., Zerna N., Cherepanov V., Milek M., Ameres S., and Chekulaeva M. (2023). mRNA stability and m6A are major determinants of subcellular mRNA localization in neurons. Molecular Cell 83(15): 2613-2828. https://doi.org/10.1016/j.molcel.2023.06.
Mendonsa S.*, von Kügelgen N.*, Dantsuji S.*, Ron M.*, Breimann L., Baranovskii A., Lödige I., Kirchner M., Fischer M., Zerna N., Bujanic L., Mertins P., Ulitsky I., and Chekulaeva M. (2023) Massively parallel identification of mRNA localization elements in primary cortical neurons. Nature Neuroscience 26: 394–405. https://www.nature.com/articles/s41593-022-01243-x
Chekulaeva M. (2022). First demonstration of miRNA-dependent mRNA decay. Nat Rev Mol Cell Biol 4 Nov. http://doi.org/10.1038/s41580-022-00557-9
Bujanic L., Shevchuk O., von Kuegelgen N., Kalinina A., Ludwik K., Koppstein D., Zerna N., Sickmann A., and and Chekulaeva M. (2022). The key features of SARS-CoV-2 leader and NSP1 required for viral escape of NSP1-mediated repression. RNA 28(5): 766-779. http://www.rnajournal.org/cgi/doi/10.1261/rna.079086.121
Mendonsa S., von Kuegelgen N., Bujanic L. and Chekulaeva M. (2021). Charcot-Marie-Tooth mutation in glycyl-tRNA synthetase stalls ribosomes in a pre-accommodation state and activates integrated stress response. Nucleic Acids Research 49(17): 10007-10017. https://doi.org/10.1093/nar/gkab730
Witte F., Ruiz-Orera J., Ciolli Mattioli C., Blachut S., Adami E., Schulz J.F., Schneider-Lunitz V., Hummel O., Patone G., Mücke M.B., Silhavy J., Heinig M., Bottolo L., Sanchis D., Vingron M., Chekulaeva M., Pravenec M., Hubner N., van Heesch S. (2021) Trans control of cardiac mRNA translation in a protein length-dependent fashion. Genome Biology 22:191. https://doi.org/10.1186/s13059-021-02397-w
von Kuegelgen N. and Chekulaeva M. (2020). Conservation of a core neurite transcriptome across neuronal types and species. WIREs RNA 14:e159. https://doi.org/10.1002/wrna.1590
Ciolli Mattioli C., Rom A., Franke V., Imami K., Arrey G., Terne M., Woehler A., Akalin A., Ulitsky I., and Chekulaeva M. (2019). Alternative 3′ UTRs direct localization of functionally diverse protein isoforms in neuronal compartments. Nucleic Acids Research 47(5): 2560-2573. https://doi.org/10.1093/nar/gky1270
Ludwik K.A., von Kuegelgen N. and Chekulaeva M. (2019). Genome-wide analysis of RNA and protein localization and local translation in mESC-derived neurons. Methods (162): 31, http://dx.doi.org/10.1016/j.ymeth.2019.02.002
Chekulaeva M. and Rajewsky N. (2019). Roles of Long Noncoding RNAs and Circular RNAs in Translation. Cold Spring Harbor Perspectives in Biology pii: a032680. https://doi.org/10.1101/cshperspect.a032680
Zappulo, A.*, van den Bruck, D.*, Ciolli Mattioli, C.*, Franke, V.*, Imami, K., McShane, E., Moreno-Estelles, M., Calviello, L., Filiipchyk, A., Peguero-Sanchez, E., Mueller, T., Woehler, A., Birchmeier, C., Merino, E., Rajewsky, N., Ohler. U., Mazzoni, E., Selbach, M., Akalin, A., and Chekulaeva, M. (2017). RNA localization is a key determinant of neurite-enriched proteome. Nature Communications 8(1): 583. https://dx.doi.org/10.1038/s41467-017-00690-6
Pamudurti, N.R.*, Bartok, O.*, Jens, M.*, Ashwal-Fluss, R.*, Stottmeister, C., Ruhe, L., Hanan. M., Wyler, M., Perez-Hernandez, D., Ramberger, E., Shenzis, S., Samson, M., Dittmar, G., Landthaler, M., Chekulaeva, M., Rajewsky, N. and Kadener, S. (2017). Translation of circRNAs. Molecular Cell 66(1): 9-21. http://dx.doi.org/10.1016/j.molcel.2017.02.021
Mauri, M., Kirchner, M., Aharoni, R., Mattioli, C., van den Bruck, D., Gutkovitch, N., Modepalli, V., Selbach, M., Moran, Y., and Chekulaeva, M. (2016). Conservation of miRNA-mediated silencing mechanisms across 600 million years of animal evolution. Nucleic Acids Research 45(2): 938-950. http://dx.doi.org/10.1093/nar/gkw792
Chekulaeva, M, Landthaler, M. (2016). Eyes on translation. Molecular Cell 63(6): 918-925, http://dx.doi.org/10.1016/j.molcel.2016.08.031
Chekulaeva*, M., Mathys*, H., Zipprich, J., Attig, J., Colic, M., Parker, R., and Filipowicz, W. (2011). miRNA repression involves GW182-mediated recruitment of CCR4–NOT through conserved W-containing motifs. Nature Structural and Molecular Biology 18(11): 1218-26. https://doi.org/10.1038/nsmb.2166
Chekulaeva, M., Parker, R., and Filipowicz, W. (2010). The GW/WG repeats of GW182 function as effector motifs for miRNA-mediated repression. Nucleic Acids Research 38(19): 6673-83. https://doi.org/10.1093/nar/gkq501
Ozgur, S, Chekulaeva, M., Stoecklin, G. (2010). Human Pat1b connects deadenylation with mRNA decapping and controls the assembly of processing bodies. Molecular and Cellular Biology 30(17): 4308-23. https://doi.org/10.1128/MCB.00429-10
Chekulaeva, M. and Filipowicz, W. (2009). Mechanisms of miRNA-mediated post-transcriptional regulation in animal cells. Current Opinion in Cell Biology 21(3): 452-60. https://doi.org/10.1016/j.ceb.2009.04.009
Chekulaeva, M., Filipowicz, W., and Parker, R. (2009). Multiple independent domains of dGW182 function in miRNA-mediated repression in Drosophila. RNA 15: 794-803. https://doi.org/10.1261/rna.1364909
Chekulaeva, M., Hentze, M.W., and Ephrussi, A. (2006). Bruno acts as a dual repressor of oskar mRNA translation promoting mRNA oligomerization and formation of silencing particles. Cell 124: 521-533. https://doi.org/10.1016/j.cell.2006.01.031
Chekulaeva, M., and Ephrussi, A. (2004). Drosophila Development: RNA Interference ab ovo. Current Biology 14: 428-30. https://doi.org/10.1016/j.cub.2004.05.036
Chekulayeva M.N., Kurnasov O.V., Shirokov V.A., and Spirin A.S. (2001). Continuous-exchange cell-free protein-synthesizing system: synthesis of HIV-1 antigen Nef. Biochem Biophys Res Commun. 280(3): 914-7. https://doi.org/10.1006/bbrc.2000.4188